5 research outputs found

    Causal Intersectionality and Dual Form of Gradient Descent for Multimodal Analysis: a Case Study on Hateful Memes

    Full text link
    In the wake of the explosive growth of machine learning (ML) usage, particularly within the context of emerging Large Language Models (LLMs), comprehending the semantic significance rooted in their internal workings is crucial. While causal analyses focus on defining semantics and its quantification, the gradient-based approach is central to explainable AI (XAI), tackling the interpretation of the black box. By synergizing these approaches, the exploration of how a model's internal mechanisms illuminate its causal effect has become integral for evidence-based decision-making. A parallel line of research has revealed that intersectionality - the combinatory impact of multiple demographics of an individual - can be structured in the form of an Averaged Treatment Effect (ATE). Initially, this study illustrates that the hateful memes detection problem can be formulated as an ATE, assisted by the principles of intersectionality, and that a modality-wise summarization of gradient-based attention attribution scores can delineate the distinct behaviors of three Transformerbased models concerning ATE. Subsequently, we show that the latest LLM LLaMA2 has the ability to disentangle the intersectional nature of memes detection in an in-context learning setting, with their mechanistic properties elucidated via meta-gradient, a secondary form of gradient. In conclusion, this research contributes to the ongoing dialogue surrounding XAI and the multifaceted nature of ML models

    Calcium dynamics regulating the timing of decision-making in <i>C. elegans</i>

    Get PDF
    Brains regulate behavioral responses with distinct timings. Here we investigate the cellular and molecular mechanisms underlying the timing of decision-making during olfactory navigation in Caenorhabditis elegans. We find that, based on subtle changes in odor concentrations, the animals appear to choose the appropriate migratory direction from multiple trials as a form of behavioral decision-making. Through optophysiological, mathematical and genetic analyses of neural activity under virtual odor gradients, we further find that odor concentration information is temporally integrated for a decision by a gradual increase in intracellular calcium concentration ([Ca2+]i), which occurs via L-type voltage-gated calcium channels in a pair of olfactory neurons. In contrast, for a reflex-like behavioral response, [Ca2+]i rapidly increases via multiple types of calcium channels in a pair of nociceptive neurons. Thus, the timing of neuronal responses is determined by cell type-dependent involvement of calcium channels, which may serve as a cellular basis for decision-making

    DsTau: Study of tau neutrino production with 400 GeV protons from the CERN-SPS

    Full text link
    In the DsTau experiment at the CERN SPS, an independent and direct way to measure tau neutrino production following high energy proton interactions was proposed. As the main source of tau neutrinos is a decay of Ds mesons, produced in proton-nucleus interactions, the project aims at measuring a differential cross section of this reaction. The experimental method is based on a use of high resolution emulsion detectors for effective registration of events with short lived particle decays. Here we present the motivation of the study, details of the experimental technique, and the first results of the analysis of the data collected during test runs, which prove feasibility of the full scale study of the process in future

    Data from: Calcium dynamics regulating the timing of decision-making in C. elegans

    No full text
    Brains regulate behavioral responses with distinct timings. Here we investigate the cellular and molecular mechanisms underlying the timing of decision-making during olfactory navigation in Caenorhabditis elegans. We find that, based on subtle changes in odor concentrations, the animals appear to choose the appropriate migratory direction from multiple trials as a form of behavioral decision-making. Through optophysiological, mathematical and genetic analyses of neural activity under virtual odor gradients, we further find that odor concentration information is temporally integrated for a decision by a gradual increase in intracellular calcium concentration ([Ca2+]i), which occurs via L-type voltage-gated calcium channels in a pair of olfactory neurons. In contrast, for a reflex-like behavioral response, [Ca2+]i rapidly increases via multiple types of calcium channels in a pair of nociceptive neurons. Thus, the timing of neuronal responses is determined by cell type-dependent involvement of calcium channels, which may serve as a cellular basis for decision-making

    The data of 100 worms during odor avoidance behavior.

    No full text
    The Excel sheets contains x and y positions (mm), the odor concentration at the position (micro-M) and the behavioral states (Run or Pirouette) of 100 animals during 121-720 s of the odor avoidance assay. This dataset was used in Figures 1 and 2
    corecore